If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=1089
We move all terms to the left:
7x^2-(1089)=0
a = 7; b = 0; c = -1089;
Δ = b2-4ac
Δ = 02-4·7·(-1089)
Δ = 30492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30492}=\sqrt{4356*7}=\sqrt{4356}*\sqrt{7}=66\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-66\sqrt{7}}{2*7}=\frac{0-66\sqrt{7}}{14} =-\frac{66\sqrt{7}}{14} =-\frac{33\sqrt{7}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+66\sqrt{7}}{2*7}=\frac{0+66\sqrt{7}}{14} =\frac{66\sqrt{7}}{14} =\frac{33\sqrt{7}}{7} $
| 3y+4=8y-7 | | 3x(x-3)=10x^2-12x | | 4x-2+2x+8=12 | | -92=2x-3(4x+4) | | 3j-2j=16 | | 2x+100=2500 | | 3x+3(-2x+13)=3 | | 10b-2b=16 | | 64=x/48139x100 | | -16-8n=4+2n | | x÷3+5=2(x÷3) | | -4x-(5/3)=(43/3) | | -6-3v=7v+66 | | 5(x-3)+4=4x-4 | | 3z+5=8z-36 | | 3w+5=7w+13 | | -7x-6(2x-3)=-134 | | 4x3-2x+1=0 | | x/3+5=2(x/3) | | 8x+8=2x+47 | | 5x-2(2-3x)=2x-2 | | -34-2n=8+5n | | 4x+5x=1280 | | -4-4v=6v+59 | | 3z+10=8z-16 | | -3x-5(x+9)=-117 | | 6w+8=9w+23 | | 7a+12=61 | | 2y+4=7y-28 | | 9=4x-3(x-6) | | 3+2c=c-7 | | 9x+8=4x+41 |